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Abstract
OpenLDAP's new MDB library is a highly optimized B+tree implementation that is orders of magnitude faster and 
more efficient than everything else in the software world. Reads scale perfectly linearly across arbitrarily many 
CPUs with no bottlenecks, and data is returned with zero memcpy's. Writes are on average twenty times faster 
than commonly available databases such as SQLite. The entire library compiles down to only 32K of object 
code, allowing it to execute completely inside a typical CPU's L1 cache. Backends for OpenLDAP slapd, Cyrus 
SASL, Heimdal Kerberos, SQLite 3, and OpenDKIM have already been written, with other projects in progress.

1. Introduction

The MDB library was written specifically for OpenLDAP as a result of over a decade of 
experience working with BerkeleyDB (Oracle BerkeleyDB "BDB"[1]). BDB's performance 
characteristics were too slow in its native form, and the caching we introduced on top of it 
made configuration quite complex. Also, while a lot of interesting new research has been 
published in the database field, none of these ideas were filtering into the BDB code base. It 
was apparent that BDB was holding us back and a simpler solution was needed.

The MDB library is fully transactional and implements B+ trees[2] with Multi-Version 
Concurrency Control[3]. The entire database is mapped into virtual memory and all data 
fetches are performed via direct access to the mapped memory instead of through 
intermediate buffers and copies.

2. Background

Before describing the improvements offered by the MDB design, an overview of the existing 
BDB-based backends (back-bdb and back-hdb) will be presented. 

LDAP and BDB have a long history together; Netscape commissioned the 2.0 release of BDB 
specifically for use in their LDAP server[4]. The OpenLDAP Project's first release using the 
BDB-specific APIs was OpenLDAP 2.1 in June 2002. Since BDB maintains its own internal 
cache, it was hoped that the back-bdb backend could be deployed without any backend-level 
caching, but early benchmark results showed that retrieving entries directly from the database 
on every query was too slow. Despite radical improvements in entry fetch and decoding 
speed[5], the decision was made to introduce an entry cache for the backend, and the cache 
management problems grew from there.
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These problems include:

• Multiple caches that each need to be carefully configured. On top of the BDB cache, 
there are caches for entries, DNs, and attribute indexing in the backend. All of these 
waste memory since the same data may be present in three places - the filesystem 
cache, the BDB cache, and the backend caches. Configuration is a tedious job 
because each cache layer has different size and speed characteristics and it is difficult 
to strike a balance that is optimal for all use cases.

• Caches with very complex lock dependencies. For speed, most of the backend caches 
are protected by simple mutexes. However, when interacting with the BDB API, these 
mutexes must be dropped and exchanged for (much slower) database locks. 
Otherwise deadlocks which could not be detected by BDB's deadlock detector may 
occur. Deadlocks occur very frequently in routine operation of the backend.

• Caches with pathological behavior if they were smaller than the whole database. When 
the cache size was small enough that a significant number of queries were not being 
satisfied from the cache, extreme heap fragmentation was observed[6], as the cache 
freed existing entries to make room for new entries. The fragmentation would cause 
the size of the slapd process to rapidly grow, defeating the purpose of setting a small 
cache size. The problem was worst with the memory allocator in GNU libc[7], and 
could be mitigated by using alternatives such as Hoard[8] or Google tcmalloc[9], but 
additional changes were made in slapd to reduce the number of calls to malloc() and 
free() to delay the onset of this fragmentation issue[10].

• Caches with very low effectiveness. When multiple queries arrive whose result sets are 
larger than the entry cache, the cache effectiveness drops to zero because entries are 
constantly being freed before they ever get any chance of being re-used[11]. A great 
deal of effort was expended exploring more advanced cache replacement algorithms to 
combat this problem[12][13].

From the advent of the back-bdb backend until the present time, the majority of development 
and debugging effort in these backends has all been devoted to backend cache management. 
The present state of affairs is difficult to configure, difficult to optimize, and extremely labor 
intensive to maintain.

Another issue relates to administrative overhead in general. For example, BDB uses write-
ahead logs for its transaction support. These logs are written before database updates are 
performed, so that in case an update is interrupted or aborted, sufficient information is present 
to undo the updates and return the database to the state it was in before the update began. 
The log files grow continuously as updates are made to a database, and can only be removed 
after an expensive checkpoint operation is performed. Later versions of BDB added an auto-
remove option to delete old log files automatically, but if the system crashed while this option 
was in use, generally the database could not be recovered successfully because the 
necessary logs had been deleted.



3. Solutions

The problems with back-bdb and back-hdb can be summed up in two main areas: cache 
management, and lock management. The approach to a solution with back-mdb is simple - do 
no caching, and do no locking. The other issues of administrative overhead are handled as 
side-effects of the main solutions.

3.1 Eliminating Caching

One fundamental concept behind the MDB approach is known as "Single-Level Store"[14]. 
The basic idea is to treat all of computer memory as a single address space. Pages of 
storage may reside in primary storage (RAM) or in secondary storage (disk) but the actual 
location is unimportant to the application. If a referenced page is currently in primary storage 
the application can use it immediately, if not a page fault occurs and the operating system 
brings the page into primary storage. The concept was introduced in 1964 in the Multics[15] 
operating system but was generally abandoned by the early 1990s as data volumes 
surpassed the capacity of 32 bit address spaces. (We last knew of it in the Apollo 
DOMAIN[16] operating system, though many other Multics-influenced designs carried it on.) 
With the ubiquity of 64 bit processors today this concept can again be put to good use. (Given 
a virtual address space limit of 63 bits that puts the upper bound of database size at 8 
exabytes. Commonly available processors today only implement 48 bit address spaces, 
limiting us to 47 bits or 128 terabytes.)

Another operating system requirement for this approach to be viable is a Unified Buffer 
Cache. While most POSIX-based operating systems have supported an mmap() system call 
for many years, their initial implementations kept memory managed by the VM subsystem 
separate from memory managed by the filesystem cache. This was not only wasteful (again, 
keeping data cached in two places at once) but also led to coherency problems - data 
modified through a memory map was not visible using filesystem read() calls, or data modified 
through a filesystem write() was not visible in the memory map. Most modern operating 
systems now have filesystem and VM paging unified, so this should not be a concern in most 
deployments[17][18][19].

The MDB library is designed to access an entire database thru a single read-only memory 
map. Keeping the mapping read-only prevents stray writes from buggy application code from 
corrupting the database. Updates are performed using regular write() calls. (Updating through 
the map would be difficult anyway since files cannot be grown through map references; only 
updates to existing pages could be done through the map. For simplicity all updates are done 
using write() and it doesn't matter whether the update grows the file or not.) This update 
approach requires that the filesystem and VM views are kept coherent, thus the requirement 
that the OS uses a Unified Buffer Cache.

The memory-mapped approach makes full use of the operating system's filesystem cache, 
and eliminates any database-level caching. Likewise the back-mdb backend performs no 
caching of its own; it uses information from the database directly. Using the memory-mapped 



data thus eliminates two levels of caching relative to back-hdb, as well as eliminating 
redundant memcpy() operations between those caches. It also eliminates all cache 
tuning/configuration issues, thus easing deployment for administrators.

Of course, by eliminating caching, one would expect to incur a significant performance hit. It 
should be much faster to dump out the contents of a cached, fully decoded entry in response 
to a search request, than to read the entry in from disk and decode it on every request. Early 
results with back-mdb showed this to be true, but further optimization in back-mdb has mostly 
eliminated this performance hit.

3.2 Eliminating Locking

The other fundamental concept behind MDB is the use of Multi-Version Concurrency Control 
(MVCC). The basic idea is that updates of data never overwrite existing data; instead the 
updates write to new pages and thus create a new version of the database. Readers only 
ever see the snapshot of the database as it existed when a read transaction began, so they 
are fully isolated from writers. Because of this isolation read accesses require no locks, they 
always have a self-consistent view of the database.

BDB has supported MVCC since version 4.5.20, but because of the caching layer in back-
bdb/hdb there was no benefit to using it. The only way to get any gain from using MVCC was 
to also eliminate the backend caching layer, and without the caching layer back-bdb/hdb's 
performance would be too slow because data lookups in BDB were still too slow.

A major downside of MVCC-based systems is that since they always write new data to new 
disk pages, the database files tend to grow without bound. They need periodic compaction or 
garbage collection in order to keep their disk usage constrained, and the required frequency 
of such compaction efforts is very high on databases with high update rates. Additionally, 
systems based on garbage collection generally require twice as much disk space as the 
actual data occupies. Also, in order to sustain a write rate of N operations/second, the I/O 
system must actually support >>2N operations/second, since the compaction task needs to 
run faster than the normal write task in order to catch up and actually complete its job, and the 
volume of data already written always exceeds the volume being written. If this over-
provisioning of I/O resources cannot be guaranteed, then the typical solution to this problem 
is to deny updates while compaction is being performed.

Causing a service outage for writes while garbage collection is performed is unacceptable, so 
MDB uses a different approach. Within a given MDB database environment, MDB maintains 
two B+tree structures - one containing application data, and another one containing a free list 
with the IDs of pages that are no longer in use. Tracking the in-use status is typically done 
with reference counters and other such mechanisms that require locking. Obviously the use of 
locking would defeat the purpose of using MVCC in the first place, so a lockless solution was 
designed instead. With this solution, pages that are no longer in use by any active snapshot 
of the database are re-used by updaters, so the database size remains relatively static. This 
is a key advantage of MDB over other well-known MVCC databases such as CouchDB[20].



4. Implementation Highlights

The MDB library API was loosely modeled after the BDB API, to ease migration of BDB-based 
code. The first cut of the back-mdb code was simply copied from the back-bdb source tree, 
and then all references to the caching layers were deleted. After a few minor API differences 
were accounted for, the backend was fully operational (though still in need of optimization). As 
of today back-mdb comprises 340KB of source code, compared to 476KB for back-bdb/hdb, 
so back-mdb is approximately 30% smaller. Development was rapid; the MDB library code 
was feature-complete August 31, 2011 at which point coding of back-mdb began. Back-mdb 
was feature-complete 5 days later. This demonstrates the ease of porting from the BDB API.

The MDB code itself started from Martin Hedenfalk's append-only Btree code in the OpenBSD 
ldapd source repository[21]. The first cut of the MDB code was simply copied from the ldapd 
source, and then all of the Btree page cache manager was deleted and replaced with mmap 
accesses. The original Btree source yielded an object file of 39KB; the MDB version was 
32KB. Initial testing with the append-only code proved that approach to be completely 
impractical. With a small test database and only a few hundred add/delete operations, the DB 
occupied 1027 pages but only 10 pages actually contained current data; over 99% of the 
space was wasted.

Along with the mmap management and page reclamation, many other significant changes 
were made to arrive at the current MDB library, mostly to add features from BDB that back-
mdb would need. As of today the MDB library still comprises only 32KB of object code. 
(Comparing source code is not very informative since the MDB source code has been heavily 
expanded with Doxygen comments. The initial version of mdb.c was 59KB as opposed to 
btree.c at 76KB but with full documentation embedded mdb.c is now 162KB. Also for 
comparison, BDB is now over 1.5MB of object code.) 

4.1 MDB Change Summary

The append-only Btree code used a meta page at the end of the database file to point at the 
current root node of the Btree. New pages were always written out sequentially at the end of 
the file, followed by a new meta page upon transaction commit. Any application opening the 
database needed to search backward from the end of the file to find the most recent meta 
page, to get a current snapshot of the database. (Further explanation of append-only 
operation is available at Martin's web site[22].)

In MDB there are two meta pages occupying page 0 and page 1 of the file. They are used 
alternately by transactions. Each meta page points to the root node of two Btrees - one for the 
free list and one for the application data. New data first re-uses any available pages from the 
free list, then writes sequentially at the end of the file if no free pages are available. Then the 
older meta page is written on transaction commit. This is nothing more than standard double-
buffering - any application opening the database uses the newer meta page, while a 
committer overwrites the older one. No locks are needed to protect readers from writers; 
readers are guaranteed to always see a valid root node.



The original code only supported a single Btree in a given database file. For MDB we wanted 
to support multiple trees in a single database file. The back-mdb indexing code uses 
individual databases for each attribute index, and it would be a non-starter to require a 
sysadmin to configure multiple mmap regions for a single back-mdb instance. Additionally, the 
indexing code uses BDB's sorted duplicate feature, which allows multiple data items with the 
same key to be stored in a Btree, and this feature needed to be added to MDB as well. These 
features were both added using a subdatabase mechanism, which allows a data item in a 
Btree to be treated as the root node of another Btree.

4.2 Locking

For simplicity the MDB library allows only one writer at a time. Creating a write transaction 
acquires a lock on a writer mutex; the mutex normally resides in a shared memory region so 
that it can be shared between multiple processes. This shared memory is separate from the 
region occupied by the main database. The lock region also contains a table with one slot for 
every active reader in the database. The slots record the reader's process and thread ID, as 
well as the ID of the transaction snapshot the reader is using. (The process and thread ID are 
recorded to allow detection of stale entries in the table, e.g. threads that exited without 
releasing their reader slot.) The table is constructed in processor cache-aligned memory such 
that False Sharing[23] of cache lines is avoided. (On Windows a named mutex is used 
instead. Likewise, on platforms like MacOSX and FreeBSD that don't support POSIX process-
shared mutexes, a named semaphore is used.)

Readers acquire a slot the first time a thread opens a read transaction. Acquiring an empty 
slot in the table requires locking a mutex on the table. The slot address is saved in thread-
local storage and re-used the next time the thread opens a read transaction, so the thread 
never needs to touch the table mutex ever again. The reader stores its transaction ID in the 
slot at the start of the read transaction and zeroes the ID in the slot at the end of the 
transaction. In normal operation, there is nothing that can block the operation of readers.

The reader table is used when a writer wants to allocate a page, and knows that the free list is 
not empty. Writes are performed using copy-on-write semantics; whenever a page is to be 
written, a copy is made and the copy is modified instead of the original. Once copied, the 
original page's ID is added to an in-memory free list. When a transaction is committed, the in-
memory free list is saved as a single record in the free list DB along with the ID of the 
transaction for this commit. When a writer wants to pull a page from the free list DB, it 
compares the transaction ID of the oldest record in the free list DB with the transaction IDs of 
all of the active readers. If the record in the free list DB is older than all of the readers, then  
all of the pages in that record may be safely re-used because nothing else in the DB points to 
them any more.

The writer's scan of the reader table also requires no locks, so readers cannot block writers. 
The only consequence of a reader holding onto an old snapshot for a long time is that page 
reclaiming cannot be done; the writer will simply use newly allocated pages in the meantime.



Configuration for an application using MDB is extremely simple - there are no cache 
configuration settings. The library requires only a pathname for storing the database files, and 
a maximum allowed size for the database. The configuration settings only affect the capacity 
of the database, not its performance; there is nothing to tune.

4.3 Notable Special Features

A number of special options are provided in the MDB API that are worth mentioning:

• Explicit Key Types: while BDB supported custom sort functions for database keys, it 
was inconvenient to use them because their code was private to a given application 
and not available to the generic BDB management tools. Manipulating a database 
without using the correct collation would result in a corrupted database. With MDB, 
flags can be set to explicitly denote keys that are sorted in reverse byte order, as well 
as keys that are in native binary integer format. These cover the most common cases 
that required custom sorting in our use of BDB, and the flags are stored in the 
database header so that any MDB application will sort correctly without any special 
effort.

• Append Mode: BDB provided a special bulk-load API aimed at improving the speed of 
database bulk loads, but it was extremely awkward to format the input data for this API. 
In MDB simply setting the MDB_APPEND flag on a put operation triggers MDB's bulk-
load support. When this flag is set, data items are added sequentially to the database, 
allowing writes to proceed at the full sequential write speed of the underlying storage 
system.

• Reserve Mode: Typically when storing records in the database, data is copied from a 
user-supplied buffer into an internal write buffer, before being written to the underlying 
storage. With the MDB_RESERVE flag, the database reserves a space of the desired 
size in its write buffer and returns the address to the caller, instead of copying the 
user's data. This is useful when the output data is being generated on the fly, as 
opposed to being a simple copy of a static data item. In back-mdb this is used when 
serializing a slapd Entry structure for storage, and allows these large objects to be 
stored without an extra memcpy step.

• Fixed Mapping: An option is available to always map the database at a fixed address. 
This feature allows complex pointer-based data structures to be stored directly in the 
database with minimal serialization, and to be read from the database with no 
deserialization. This feature could be used for an object-oriented database, among 
other purposes.

5. Results

Profiling was done using multiple tools, including FunctionCheck[24], valgrind callgrind[25], 
and oprofile[26], to aid in optimization of MDB. Oprofile has the least runtime overhead and 
provides the best view of multi-threaded behavior, but since it is based on random samples it 
tends to miss some data of interest. FunctionCheck is slower, at four times slower than 
normal, but since it uses instrumented code it always provides a complete profile of overall 
function run times. callgrind is slowest, at thirty times slower than normal, and only provides 



relevant data for single-threaded operation, but since it does instruction-level profiling it gives 
the most detailed view of program behavior. Since program behavior can vary wildly between 
single-threaded and multi-processor operation, it was important to gather performance data 
from a number of different perspectives.

5.1 Microbenchmark Results

The benchmarking code developed for Google's LevelDB[27] was adapted for use with MDB 
and BDB. LevelDB caught our attention because it specifically claims to be fast and 
lightweight. We repeated their tests against LevelDB as well as SQLite 3 and Kyoto Cabinet's 
TreeDB, in addition to testing MDB and BDB.

One needs to be particularly careful when microbenchmarking, since the results in isolation 
tend to change drastically when the code moves to real world deployments. Testing under just 
a single enviroment also may give a skewed image of the results one may expect in more 
general use. As such, all of the test scenarios that Google outlined were repeated under 
multiple conditions:

1. Using a tmpfs (memory-based) filesystem, to show the raw efficiency of each database 
implementation's algorithms, independent of any I/O overhead.

2. Using an SSD, to show performance when some I/O overhead is present, but without 
seek latency.

3. Using a standard HDD, to show worst-case performance.

The reiserfs filesystem was used for both (2) and (3), but it became apparent that this was not 
fully representative of the range of deployments. As such, all of the tests were repeated again 
using the HDD across a wide range of filesystems, including btrfs, ext2, ext3, ext4, jfs, ntfs, 
reiserfs, xfs, and zfs. In addition, the journaling filesystems that support using an external 
journal were retested with their journal stored on a tmpfs file. Testing in this configuration 
shows how much overhead the filesystem's journaling mechanism imposes, and how much 
performance is lost by using the default internal journal configuration.

These tests were performed using Linux kernel version 3.2.0-26 as shipped in Ubuntu 12.04, 
which was the latest released for Ubuntu at the time of writing. Newer kernel versions are 
rumored to provide improved performance in ext4, but it was not available for testing. The test 
machine is a Dell Precision M4400 laptop with a quad-core Intel(R) Core(TM)2 Extreme CPU 
Q9300 running at 2.53GHz, with 6144KB of total L3 cache and 8GB of DDR2 RAM at 
800MHz. Tests were all run in single-user mode to prevent variations due to other system 
activity. CPU performance scaling was disabled (scaling_governor = performance) to ensure 
a consistent CPU clock speed for all tests. The numbers reported below are the median of 
three measurements. The resulting databases are completely deleted between each of the 
three measurements.

The SSD used for testing is a relatively old model, Samsung PM800 Series 256GB with 
original firmware, version VBM15D1Q. The drive has been in use for several years and was 



not reformatted before running these tests.

The HDD used for testing is a Western Digital WD20EARX 2TB SATA drive. This is a 
nominally 5400rpm drive, optimized for low power consumption as opposed to high 
performance. It was newly purchased for the tests, and each filesystem was created fresh for 
each test run.

How Lightweight is "Lightweight"?

Table 5.1 shows the output of the "size" command run across the test programs, each linked 
with the static archive of their respective database libraries. This shows the minimum size of 
an application using each library, minus any other runtime libraries they depend on. The 
db_bench app uses LevelDB. 

text data bss dec hex filename

271991 1456 320 273767 42d67 db_bench

1682579 2288 296 1685163 19b6ab db_bench_bdb

96879 1500 296 98675 18173 db_bench_mdb

655988 7768 1688 665444 a2764 db_bench_sqlite3

296244 4808 1080 302132 49c34 db_bench_tree_db

Table 5.1: Relative Footprint

MDB is written in plain C; aside from the C library its only other dependency is the system's 
threading library. BDB and SQLite3 are also plain C, but they include a lot of features that are 
extraneous to plain key/value access. LevelDB and Kyoto Cabinet are written in C++. Clearly 
MDB has the smallest footprint. The core of the library fits entirely within a CPU's Level 1 
cache. Read requests can be serviced with essentially zero instruction fetch overhead.

Read Performance

MDB has no cache of its own, but the other databases all use various forms of caching. Table  
5.2 shows the results for read operations where all data resides in the respective database 
caches. In this test the keys are fixed at 16 bytes in length, the data items are 100 bytes, and 
there are 1 million records in the database.

Sequential ops/sec Random ops/sec

MDB 14,492,754 768,640

BerkeleyDB 879,507 173,641

LevelDB 4,504,505 187,196

Kyoto TreeDB 1,282,051 218,675

SQLite3 339,328 101,276

Table 5.2: Fully Cached Read Performance, Small Records

Read performance is even more dramatic for larger records, demonstrated here using a 
database with 100,000 byte keys, and 1,000 records. As Table 5.3 shows, MDB's read 



performance is orders of magnitude faster than everything else.

Sequential ops/sec Random ops/sec

MDB 33,333,333 2,012,072

BerkeleyDB 9,174 9,347

LevelDB 194,628 17,115

Kyoto TreeDB 18,536 17,207

SQLite3 7,476 7,690

Table 5.3: Read Performance, Large Records

With MDB's zero-memcpy reads, read performance is determined solely by the number of 
keys in the database, not the size of the records being returned.

Write Performance

The write tests across multiple filesystems generated too much data to simply summarize in a 
few tables, so several charts are provided instead. With a few exceptions, Google's LevelDB 
handily outperforms all of the other databases. Illustration 5.1 shows the performance for 
asynchronous sequential writes across all of the tested filesystems. Again, this is using 16 
byte keys, 100 byte data values, and 1 million records.

(Note that both ntfs and zfs are FUSE-based, so their performance is inherently crippled 
compared to the other filesystems.)

Illustration 5.2 shows the performance for asynchronous random writes across all of the 
tested filesystems.

Illustration 5.1: Asynchronous Sequential Writes
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From these results we can see that even though the asynchronous writes should be fully 
cached in memory, their performance is still heavily dependent on the underlying filesystem 
type. Also, despite its age, ext2 is still the fastest for many of these workloads.

All of these databases except Kyoto TreeDB also support the batching of multiple operations 
into a single transaction. Generally this allows greater throughput than just performing one 
operation per transaction. The following two charts show the performance for asynchronous 
writes with batches of 1000 operations per transaction. (For Kyoto TreeDB its single-operation 
speed is shown again, just for reference.)

In this mode MDB's bulk loading optimizations take effect, allowing it to store millions of 
records per second. Illustration 5.3 clearly demonstrates how effective the MDB_APPEND 
option is. It also shows that ext2 is ill-suited to large write operations.

Illustration 5.2: Asynchronous Random Writes
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Illustration 5.3: Batched Asynchronous Sequential Writes
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In Illustration 5.4 we see a fairly surprising result - MDB writes are fastest of all the DBs, on 
btrfs, ext3, ext4, reiserfs, and xfs. Given that MDB's focus is read performance and not write 
performance, this result is quite unexpected.

But the results for synchronous write operations are even more surprising, as shown in the 
next two charts.

For most of the filesystems, the synchronous write rates are on the order of tens of operations 
per second. But for jfs using an external journal, the write rate jumps to several thousand per 
second. Clearly, if your application requires fully synchronous writes and as high performance 
as possible, you need to use jfs with a journal stored on a separate device from the main 
filesystem. This is true regardless of whether you're performing sequential writes, as in 

Illustration 5.4: Batched Asynchronous Random Writes
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Illustration 5.5: Synchronous Sequential Writes
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Illustration 5.5 or random writes as in Illustration 5.6.

5.2 OpenLDAP slapd Results

The microbenchmark results provided a lot of useful data, but we also need to see how MDB 
performs in a real application. The following results summarize performance with MDB in 
slapd's back-mdb backend, compared to BDB in the back-hdb backend. These tests were run 
on an HP DL585G with four AMD quad-core Opteron 8354 processors and 128GB of RAM.

Table 5.4 compares basic performance of back-mdb vs back-hdb for initially loading a test 
database using slapadd in "quick" mode.

real user sys

back-hdb 66m09.831s 115m52.374s 5m15.860s

back-mdb 29m33.212s 22m21.264s 7m11.851s

Table 5.4: Time to slapadd -q 5 million entries

back-hdb has a much higher user time than real time because it was using multi-threaded 
indexing. At present back-mdb doesn't support multi-threaded indexing. back-hdb was using 
BDB 4.7.25 in these tests, but results with BDB 5.2.28 were essentially the same.

With the databases loaded, the next test was to start up slapd and time how long it took to 
scan the entire database with a single ldapsearch. Also the slapd process sizes were 
compared, relative to their DB sizes on disk. These results are summarized in Table 5.5.
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first second slapd size DB size

back-hdb 4m15.395s 0m16.204s 26GB 15.6GB

back-mdb 0m12.47s 0m9.94s 6.7GB 9GB

Table 5.5: ldapsearch comparison

back-hdb is configured with an entry cache size of 5 million entries, so all of the database is 
fully cached after the first ldapsearch is run. Also note that the DB files are entirely resident in 
the filesystem cache since slapadd had just completed before.  Also the BDB cache was 
configured at 32GB so the entire database is resident there too; no disk I/O occurs during 
these tests. This table shows the overhead of retrieving data from the BDB cache and 
decoding it into the back-hdb entry cache. But even with that overhead eliminated in the 
second run, back-mdb is still faster. For back-mdb the extra time required in the first run 
reflects the time needed for the OS to map the database pages into the slapd process' 
address space. The slapd process size for mdb is smaller than the DB size for a couple of 
reasons: first, the DB contains attribute indices, and this search doesn't reference any indices, 
so those pages are not mapped into the process. second, the DB contains a number of free 
pages that were left over from the last slapadd transaction.

Before development began it was estimated that the MDB approach would use 1/3 to 1/2 as 
much RAM as the equivalent back-hdb database; in fact back-mdb was using only 25% as 
much RAM as back-hdb on our fully cached test database.

Next, a basic concurrency test was performed by running the same ldapsearch operation 2, 4, 
8, and 16 times concurrently and measuring the time to obtain the results. The averages of 
the result times are shown in Table 5.6.

2 4 8 16

back-hdb, debian 0m23.147s 0m30.384s 1m25.665s 17m15.114s

back-hdb 0m24.617s 0m32.171s 1m04.817s 3m04.464s

back-mdb 0m10.39s 0m10.87s 0m10.81s 0m11.82s

Table 5.6: Concurrent Search Times

The first time this test was run with back-hdb yielded some extraordinarily poor results. Later 
testing revealed that this test was accidentally run using the stock build of BDB 4.7 provided 
by Debian, instead of the self-compiled build we usually use in our testing. The principle 
difference is that we always build BDB with the configure option --with-mutex=POSIX/pthread, 
whereas by default BDB uses a hybrid of spinlocks and pthread mutexes. The spinlocks are 
fairly efficient within a single CPU socket, but they scale extremely poorly as the number of 
processors increases. back-mdb's scaling is essentially flat across arbitrary numbers of 
processors since it has no locking to slow it down. The performance degrades slightly at the 
16 search case because at that point all of the processors on our test machine are busy so 
the clients and slapd are competing with other system processes for CPU time. As another 
point of reference, the time required to copy the MDB database to /dev/null using 'dd' was 



10.20 seconds. Even with all of the decoding and filtering that slapd needed to do, scanning 
the entire DB was only 6% slower than a raw copy operation.  

The previous tests show worst-case performance for search operations. For more real-world 
results, we move on to using SLAMD[28]. (SLAMD has known performance issues, but we've 
gotten used to them, and staying with the same tool lets us compare with historical results 
from our previous work as well.)  Table 5.7 summarizes the results for back-hdb vs back-mdb 
with randomly generated queries across the 5 million entry database.

Searches/sec Duration, msec

back-hdb 67456.11 1.89

back-mdb 119255.42 0.63

Table 5.7: SLAMD Search Rate Results

The back-hdb result is actually extremely good - it's about 15% faster than the second fastest 
directory software we've tested previously on this machine (OpenDS 2.3). But they're all  
utterly outclassed by back-mdb. If you look at the actual stats in Illustration 5.7 you'll see that 
the performance was still increasing as the process' page map was filling in.

After seeing these results we considered renaming MDB as "LightningDB" - its read 
performance is blindingly fast and totally unparalleled.

Another interesting observation can be made from Table 5.7 - back-mdb's search duration is 

Illustration 5.7: back-mdb Search Rate results



one third of back-hdb's, but the overall search rate is only twice as fast. This indicates that 
some other bottleneck is present in the system, possibly in the SLAMD load generator, or 
possibly in the slapd frontend. This will be the subject of a future investigation, as it shows 
that there is the potential for a further 50% increase in slapd's search rate using back-mdb.

For write speeds, back-mdb is significantly slower than back-hdb. Table 5.8 shows the 
throughput in a pure Modify test, modifying a single attribute in random entries across the 5 
million entry database.

Modifies/sec Duration, msec

back-hdb 20440.83 1.56

back-mdb 6131.77 1.29

Table 5.8: SLAMD Modify Rate Results

Note that back-mdb actually completes modifies quickly, but because MDB enforces single-
writer behavior, it does not accept as many writes per second. Our final comparison in Table 
5.9 shows a Modify Rate job running concurrently with a Search Rate job.

Searches/sec Search msec Modifies/sec Modify msec

back-hdb 40629.49 1.47 12321.36 1.62

back-mdb 85918.92 1.77 2844.95 2.80

Table 5.9: SLAMD Combined Search and Modify Rate

Most of the effort has been focused on read performance so far; future work may be able to 
boost MDB's write performance but it is not perceived as a critical problem for now.

6. Conclusions

The combination of memory-mapped operation with Multi-Version Concurrency Control 
proves to be extremely potent for LDAP directories. The administrative overhead is minimal 
since MDB databases require no periodic cleanup or garbage collection, and no particular 
tuning is needed. The copy-on-write architecture means the database can never be corrupted 
by system crashes, so the database is always immediately usable on system boot - there are 
no lengthy recovery or rebuild procedures. Code size and complexity have been drastically 
reduced, while read performance has been significantly raised. Write performance has been 
traded for read performance, but this is acceptable and can be addressed in more depth in 
the future.

6.1 Portability

While initial development was done on Linux, MDB and back-mdb have been ported to 
MacOSX and Windows. No special problems are anticipated in porting to other platforms.



6.2 Other Directions

A port of SQLite to use MDB has also been done. The MDB library needed to be extended to 
support nested transactions, but otherwise needed very little changes. Basic functionality is 
working already, and the code can be obtained at http://gitorious.org/mdb/sqlightning. There 
are probably many other applications for a small-footprint database library with relatively low 
write rates and near-zero read overhead. Some candidates are perl and python DB wrappers, 
as well as a version of MemcacheDB[29] using MDB instead of BDB. A port of XDAndroid[30] 
using the MDB port of SQLite is also in progress.

6.3 Future Work

A number of items remain on our ToDo list.

• Write optimization has not yet been investigated.

• It would be nice to allow the database map size and other configuration settings to be 
grown dynamically instead of statically configured.

• Functions to facilitate incremental and/or full backups would be nice to have.

• A back-mdb that stores entries in the DB in their in-memory format, thus requiring no 
decoding at all, is still being considered.

None of these items are seen as critical show-stoppers. MDB and back-mdb already meet all 
the goals set for them and fulfill all of the functions required of an OpenLDAP backend, while 
setting a new standard for database efficiency, scalability, and performance.
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